MDL-based context-dependent subword modeling for speech recognition.
نویسندگان
چکیده
منابع مشابه
Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition
Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...
متن کاملcontext dependent modeling in continuous speech recognition based on a persian phonetic decision tree
context-dependent modeling is a well-known approach to increase modeling accuracy in continuous speech recognition. the most common way to implement this approach is via triphone modeling. nevertheless, the large number of such models results in several problems in model training, whilst the robust training of such models is often hardly obtained. one approach to solve this problem is via param...
متن کاملImproved Subword Modeling for WFST-Based Speech Recognition
Because in agglutinative languages the number of observed word forms is very high, subword units are often utilized in speech recognition. However, the proper use of subword units requires careful consideration of details such as silence modeling, position-dependent phones, and combination of the units. In this paper, we implement subword modeling in the Kaldi toolkit by creating modified lexic...
متن کاملAcoustic modeling based on the MDL principle for speech recognition
Recently context-dependent phone units, such as triphones, have been used to model subword units in speech recognition based on Hidden Markov Models (HMMs). While most such methods employ clustering of the HMM parameters(e.g., subword clustering, state clustering, etc.), to control HMM size so as to avoid poor recognition accuracy due to an insu ciency of training data, none of them provide any...
متن کاملSpeech Attribute Recognition using Context-Dependent Modeling
Speech attributes, such as places and manners of articulation are robust against cross-speaker variation and environmental distortions. They have been used in various speech processing applications such as spoken language identification, speaker recognition and speech recognition. In this paper, we propose a method to recognize speech attributes by using a context-dependent modeling of the attr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Acoustical Society of Japan (E)
سال: 2000
ISSN: 0388-2861,2185-3509
DOI: 10.1250/ast.21.79